Ventilator-Associated Events

Symposium on Prevention of Healthcare-associated Infections in Hospitals and Community Institutions

Infection Control Branch, Centre for Health Protection, Department of Health, Hong Kong

January 19, 2019

Michael Klompas MD, MPH, FIDSA, FSHEA Professor, Harvard Medical School Hospital Epidemiologist, Brigham and Women's Hospital

Disclosures

• Grant funding

- Centers for Disease Control and Prevention
- Massachusetts Department of Public Health
- Royalties
 - UpToDate

Objectives

• Why did CDC replace VAP with VAE?

- Limitations of VAP diagnosis
- Implications for prevention
- Implications for surveillance

• How can we optimize surveillance for VAEs?

- CDC' s online VAE calculator
- Automated implementations

• How can we best prevent VAEs?

- Early extubation
- Target the specific diseases that typically cause VAEs

Why did CDC replace VAP with VAE?

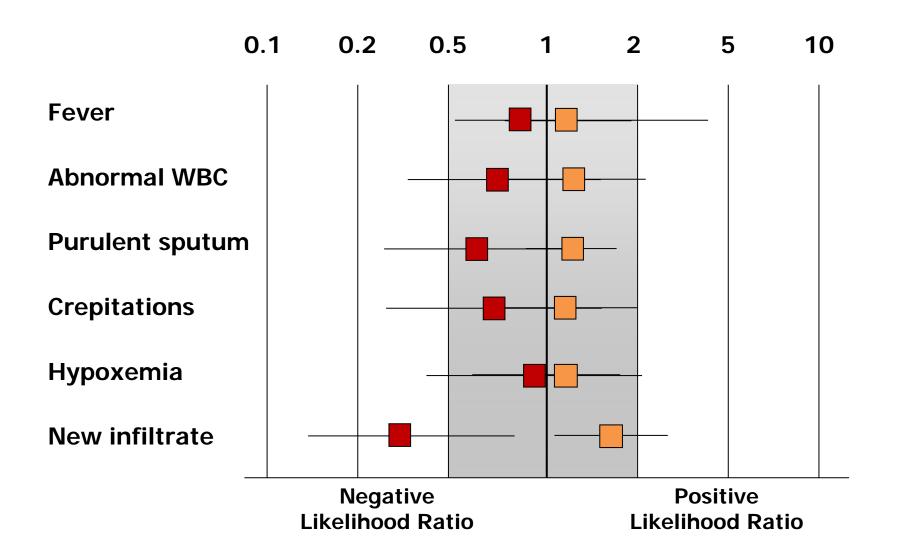
The Challenge of VAP Diagnosis

- Many complications of critical care present with the same clinical signs as VAP
 - Radiographic opacities
 - Fever
 - Abnormal white blood cell count
 - Impaired oxygenation
 - Increased pulmonary secretions

"Diffuse patchy airspace disease right greater than left with obliteration of both hemi-diaphragms. Opacities possibly slightly increased since yesterday accounting for changes in patient position and inspiration. This could represent atelectasis, pneumonia, or effusion."

Sources of fever and infiltrates

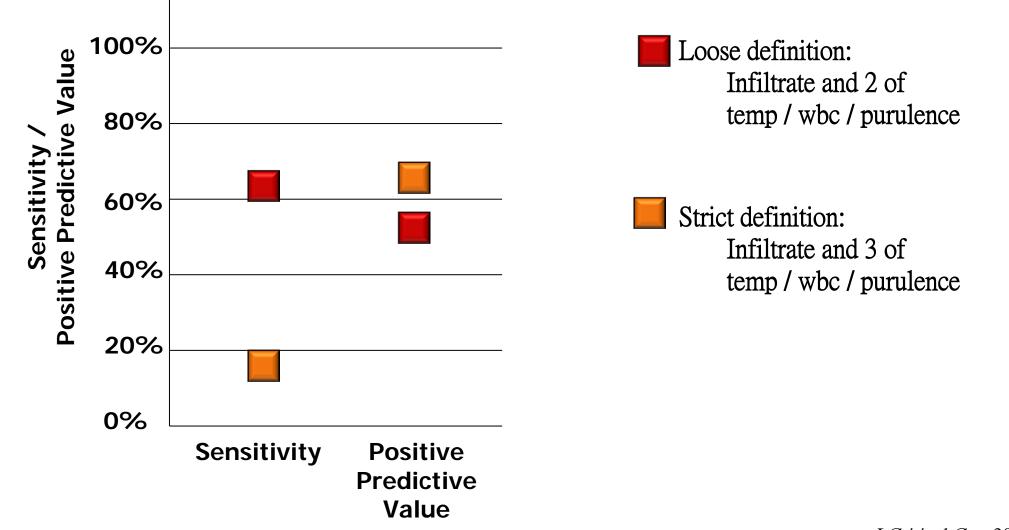
- ARDS
- Thromboembolic disease
- Hemorrhage
- Infarction
- Fibrosis
- Carcinoma
- Lymphoma
- Contusion



PLUS

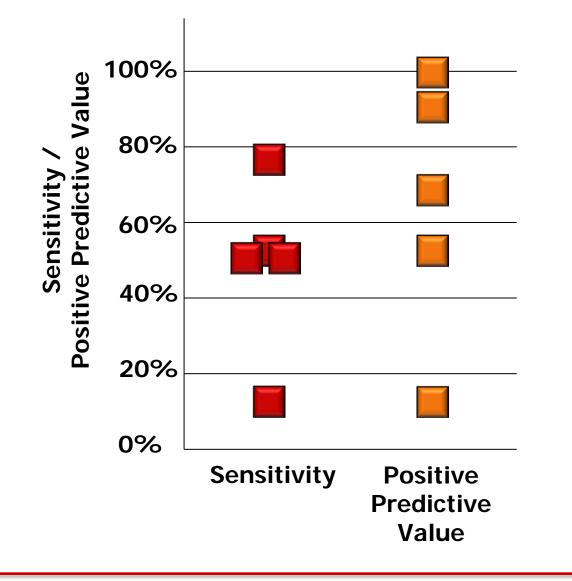
Pulmonary edema Atelectasis Contusion Fibrosis

Accuracy of clinical signs for VAP


Relative to autopsy, systematic review, 14 studies, 655 patients

JAMA 2007; 297:1583

Accuracy of Clinical Diagnosis of VAP


Relative to 253 autopsies

J Critical Care 2010;25:62

Accuracy of BAL cultures

Relative to histology

Kirtland, *Chest* 1997;112:445 Fabregas, *Thorax* 1999;54:867 Chastre, *Am Rev Respir Dis* 1984;130:924 Torres, *Am J Resp Crit Care Med* 1994;149:324 Marquette, *Am J Resp Crit Care Med* 1995;151:1878 Papazian, *Am J Resp Crit Care Med* 1995;152:1982

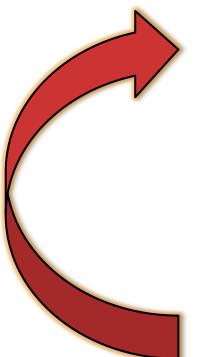
Implications for Prevention

The Classic Ventilator Bundle

Lives Cam SOME IS NOT A NUMBER, SOON IS NOT A TIME.

Elevate the head of the bed

Daily sedative interruptions


Spontaneous breathing trials

Stress ulcer prophylaxis

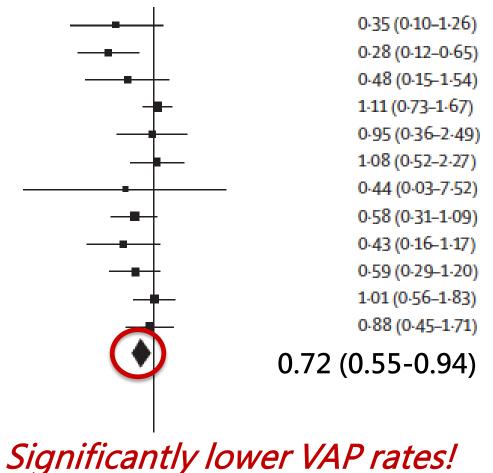
DVT prophylaxis

Oral care with chlorhexidine

Circularity Between VAP Prevention Practices and the VAP Definition

VAP Definition

Fever Leukocytosis Purulent Secretions Positive cultures


Oral care with CHG Silver Coated ETT Subglottic secretion drainage Semi-recumbent position etc.

positive cultures and/or
secretions

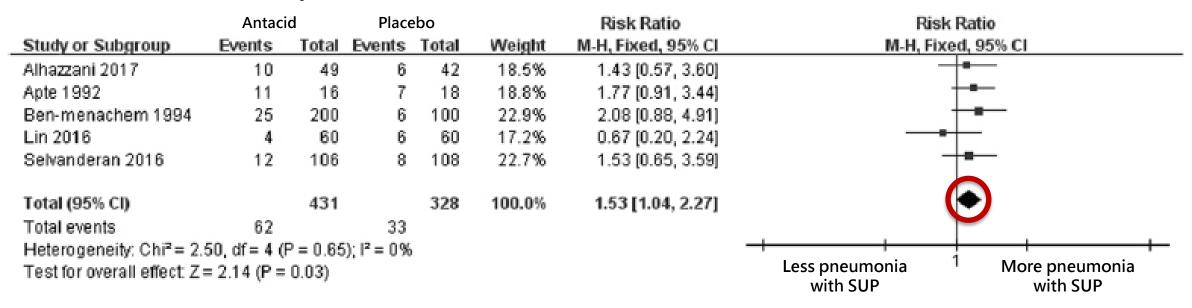
Oral Care with Chlorhexidine: Significantly *Lower* VAP Rates

Chlorhexidine							
De Riso et al (1996) ¹⁸	3	173	9	180	3.8%		
Fourrier et al (2000) ¹³	5	30	18	30	7-0%		
Houston et al (2002) ²⁰	4	270	9	291	4-4%		
MacNaughton et al (2004) ²²	32	91	28	88	14-1%		
Grap et al (2004) ¹⁴	4	7	3	5	5.9%		
Fourrier et al (2005) ¹⁹	13	114	12	114	8-3%		
Bopp et al (2006) ¹⁷	0	2	1	3	0-9%		
Koeman et al (2006) ²¹	13	127	23	130	9.9%		
Tantipong et al (2008) ²³	5	102	12	105	5-5%		
Scannapieco et al (2009) ²⁶	14	116	12	59	8-8%		
Bellisimo-Rodriguez et al (2009) ²⁴	16	64	17	69	10-6%		
Panchabhai et al (2009) ²⁵	14	88	15	83	9-4%		
Subtotal (95% CI)		1184		1157	88.5%		
Total events	123		159				
Heterogeneity: τ²=0·06, χ²=15·54, df=11 (p=0·16); l²=29%							
Test for overall effect: Z=2-40 (p=0-02)							

Ventilator-Associated Pneumonia

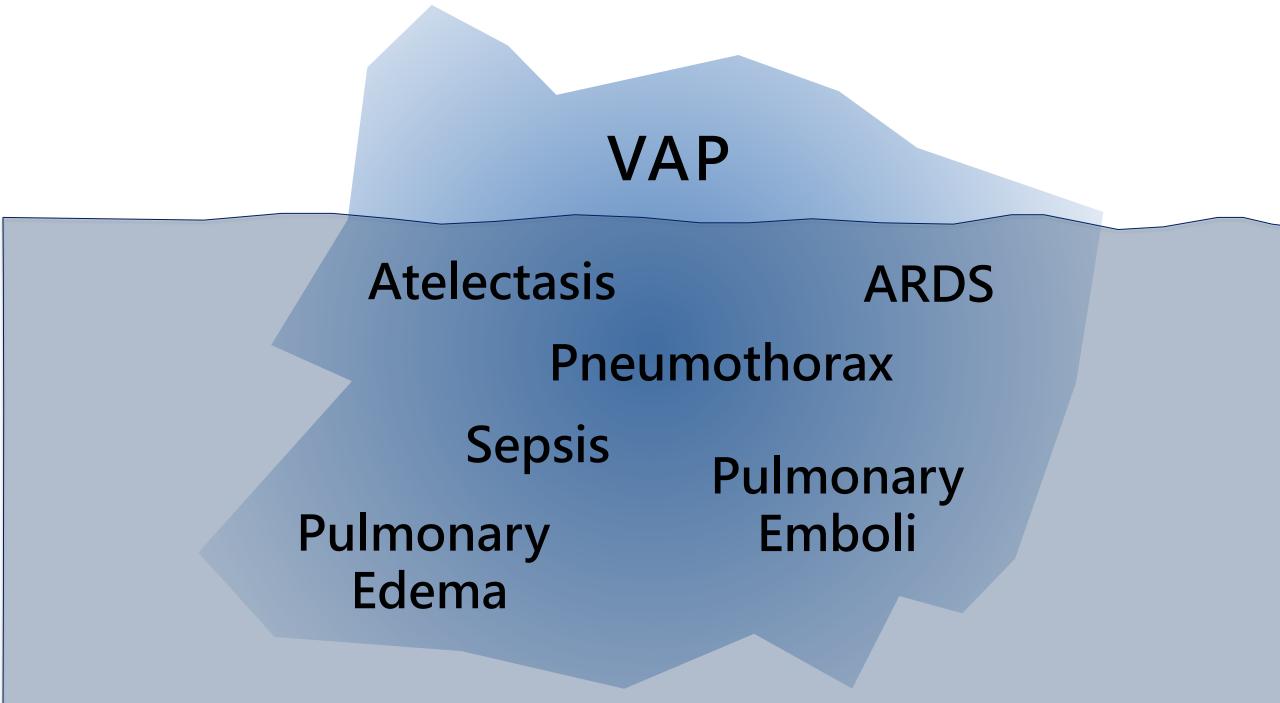
Lancet Infectious Disease 2011;11:845

Oral Care with Chlorhexidine: Significantly <u>*Higher*</u> Mortality Rates


	No of events/total		Mortality	Mortality		
Study	Treatment	Control	Odds ratio, M-H random (95% CI)	Weight (%)	Mortality Odds ratio, M-H random (95% CI)	
Fourier 2000	3/30	7/30		2	0.37 (0.08 to 1.58)	
MacNaughton 2004	29/101	29/93	-	8	0.89 (0.48 to 1.64)	
Fourrier 2005	31/114	24/114		9	1.40 (0.76 to 2.58)	
Koeman 2006	49/127	39/130	-	12	1.47 (0.87 to 2.46)	
Tantipong 2008	36/102	37/105	-	10	1.00 (0.57 to 1.77)	
Scannapieco 2009	19/116	9/59		4	1.09 (0.46 to 2.58)	
Bellissimo-Rodrigues 200	9 35/98	33/96	+	9	1.06 (0.59 to 1.91)	
Munro 2009	69/275	47/272		18	1.60 (1.06 to 2.43)	
Panchabhai 2009	78/224	70/247	+	21	1.35 (0.91 to 2.00)	
Cabov 2010	1/30	3/30		<1	0.31 (0.03 to 3.17)	
Berry 2011	17/71	28/154	<u>+</u>	7	1.42 (0.72 to 2.80)	
Total (95% CI)	367/1288	326/1330		100	1.25 (1.05 to 1.50)	
Test for heterogeneity: $\tau^2 = 0$	0.00, χ ² =8.4	1, C	0.01 0.1 1 10 1	.00	Odds Ratio	
df=10, P=0.59, ² =0%			avours Favo		25 (1.05-1.50)	
Test for overall effect: z=2.		experimental cont	rol			

BMJ 2014;348:g2197

Stress Ulcer Prophylaxis


Randomized controlled trials of ulcer prophylaxis vs placebo in patients getting enteral nutrition

Ventilator-associated pneumonia

Significantly higher risk for VAP!

Implications for surveillance

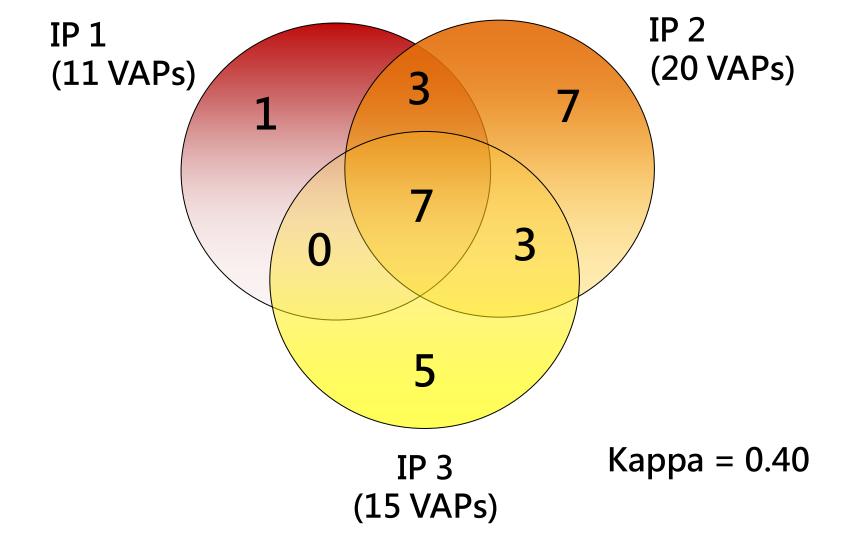
CDC' s VAP Surveillance Definition

2008

Patient must fulfill each of the three categories below:

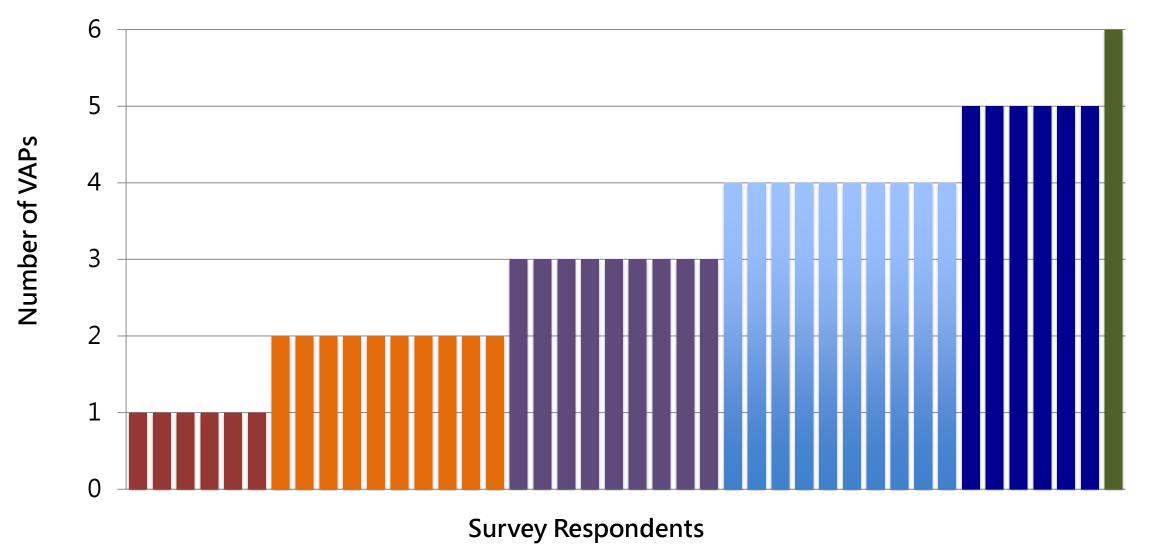
Chest Radiograph	Any one of the following: 1. New, progressive, or persistent infiltrate 2. Consolidation 3. Cavitation
Systemic Signs	 Any one of the following: 1. Temperature >38°C 2. WBC <4,000 or >12,000 WBC/mm³ 3. For adults 70 years old, altered mental status with no other recognized cause
Pulmonary Signs	 Any two of the following: 1. New onset of purulent sputum, or change in character of sputum, or increased respiratory secretions, or increased suctioning requirements 2. New onset or worsening cough, or dyspnea, or tachypnea 3. Rales or bronchial breath sounds 4. Worsening gas exchange, increased oxygen requirements, or increased ventilation demand

Complicated


Labor Intensive

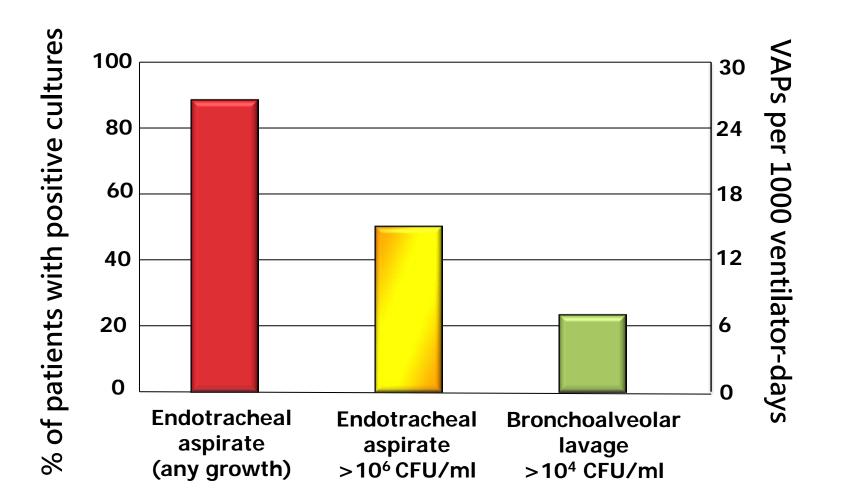
Subjective

Non-Specific


Interobserver Agreement in VAP Surveillance

50 ventilated patients with respiratory deterioration

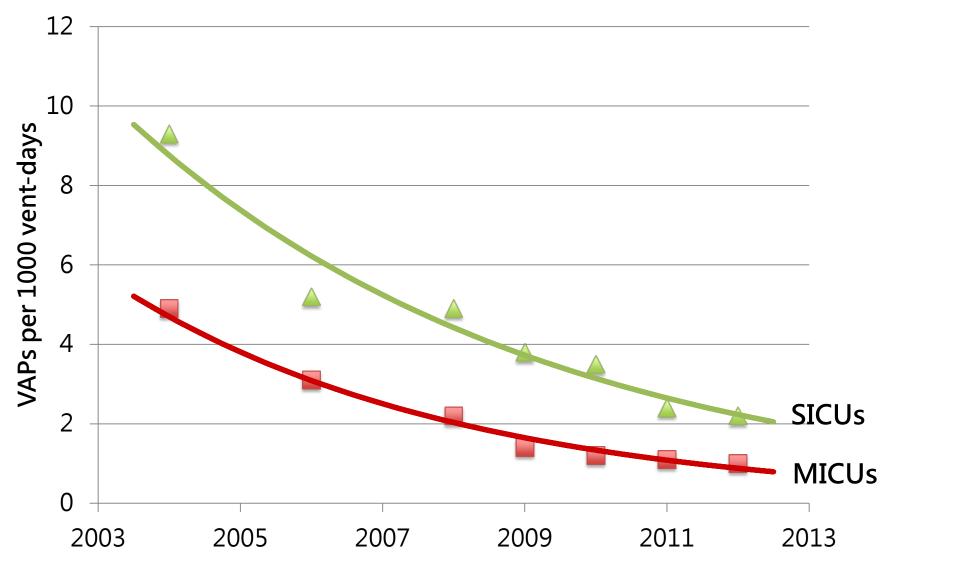
Am J Infect Control 2010:38:237


6 Case Vignettes Presented to 43 Reviewers

Crit Care Med 2014;42:497

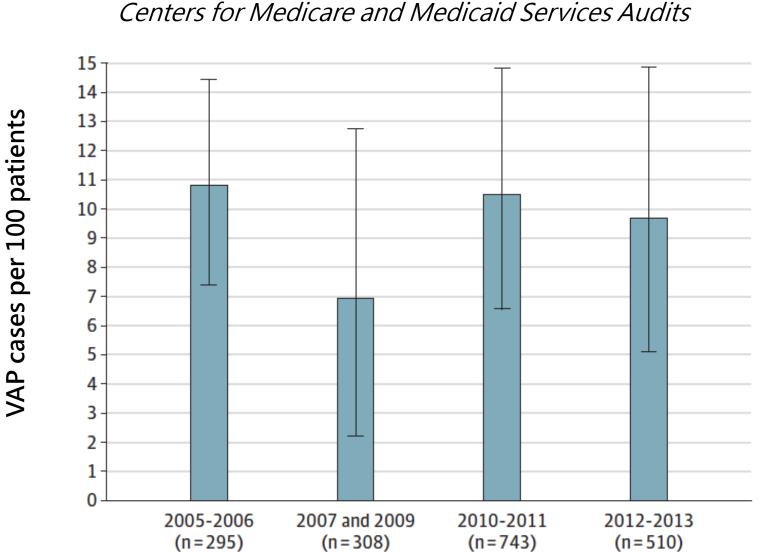
Impact of diagnostic technique on VAP rates

53 patients with clinically suspected VAP

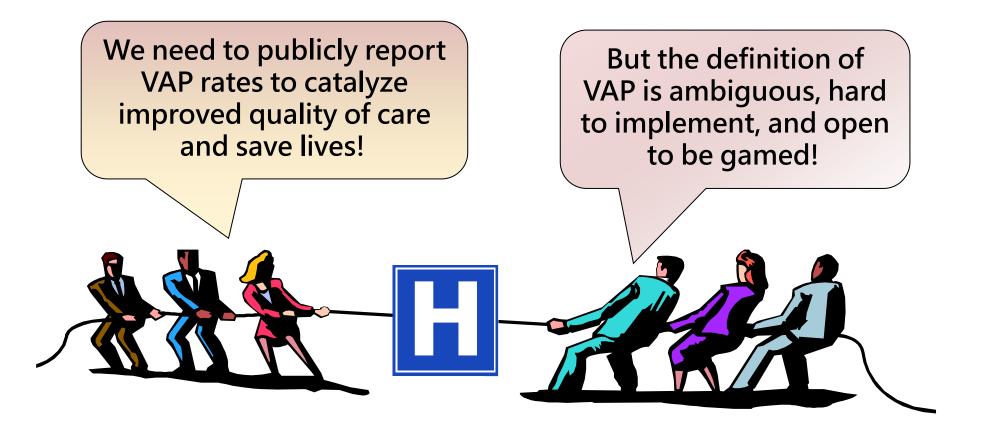

Five Ways to lower VAP rates

Without meaningfully changing patient care

- 1. Narrowly interpret subjective clinical signs
- 2. Narrowly interpret radiographs
- 3. Seek consensus between multiple surveyors
- 4. Allow clinicians to veto surveillance determinations
- 5. Increase use of quantitative BAL for diagnosis


U.S. National VAP Rates

United States, 2004-2012



Source: CDC NNIS and NHSN

U.S. National VAP Rates, 2005-2013

JAMA 2016;316:2427-2429

American Thoracic Society

We help the world breathe®

The Intensive Care Professionals

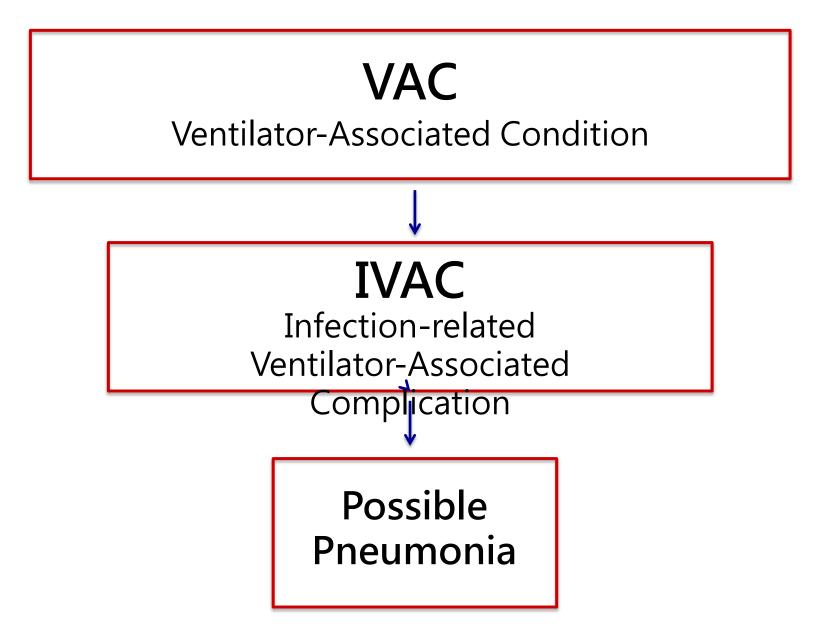
Council of State and Territorial Epidemiologists

Leaders in Applied Public Health Epidemiology

Developing a New, National Approach to Surveillance for Ventilator-Associated Events*

Shelley S. Magill, MD, PhD¹; Michael Klompas, MD, MPH^{2,3,4}; Robert Balk, MD^{5,6}; Suzanne M. Burns, RN, ACNP, MSN, RRT^{6,7}; Clifford S. Deutschman, MS, MD^{6,8}; Daniel Diekema, MD^{9,10}; Scott Fridkin, MD¹; Linda Greene, RN, MPS^{11,12}; Alice Guh, MD, MPH¹; David Gutterman, MD^{6,13}; Beth Hammer, RN, MSN, ANP-BC^{6,14}; David Henderson, MD¹⁵; Dean Hess, PhD, RRT^{16,17,18}; Nicholas S. Hill, MD^{6,19}; Teresa Horan, MPH¹; Marin Kollef, MD^{6,20}; Mitchell Levy, MD^{6,21}; Edward Septimus, MD^{22,23}; Carole VanAntwerpen, RN, BSN^{24,25}; Don Wright, MD, MPH²⁶; Pamela Lipsett, MD, MHPE^{6,27}

Critical Care Medicine 2013;41:2467-2475


An Alternative Approach to Surveillance

- Broaden the focus of surveillance from pneumonia alone to the syndrome of ventilator complications in general
 - More accurate description of what can be reliably determined using surveillance definitions
 - Emphasizes the importance of preventing *all* complications of mechanical ventilation, not just pneumonia
- Streamline the definition using quantitative criteria
 - Reduce ambiguity
 - Improve reproducibility
 - Enable electronic collection of all variables

Ventilator-Associated Events (VAE)

Sustained rise in daily minimum PEEP >3cm or FiO2 >20 points after a period of stable or improving daily minimum PEEP or FiO2

Date	PEEP (min)	FiO2 (min)	
Jan 1	10	100	
Jan 2	5	50	
Jan 3	5	40	
Jan 4	5	40	
Jan 5	8	60	
Jan 6	8	50	VÆ
Jan 7	8	40	
Jan 8	5	40	
Jan 9	5	40	

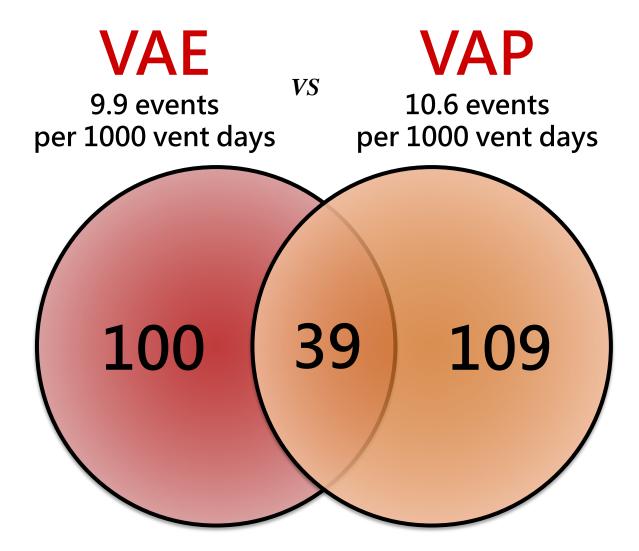
nhsn.cdc.gov/VAECalculator/vaecalc.html

National Healthcare Safety Network (NHSN)


CDC > NHSN > Materials for Enrolled Facilities

NHSN Ventilator-Associated Event (VAE) Calculator Ver. 5.0

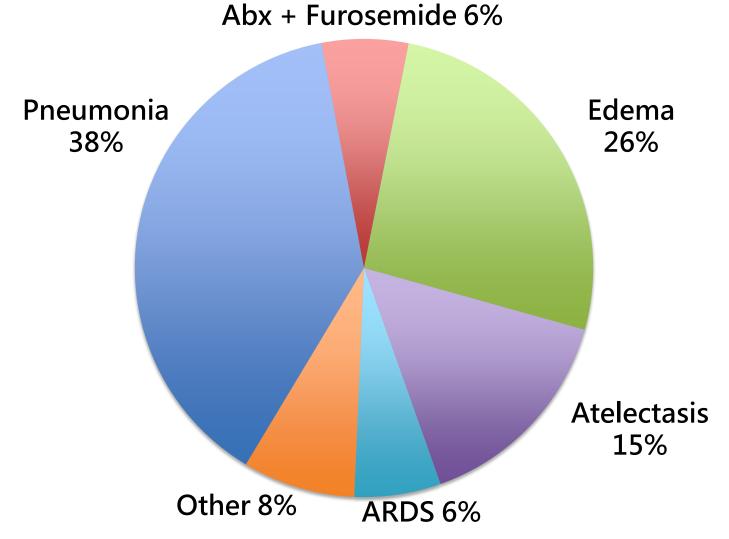
MV Day	Date	Hide (cmH ₂ O)	Min. PEEP	Hide	Min. FiO ₂	VAE	T<36° or T>38°	WBC ≤ 4,000 or WBC ≥ 12,000 cells/mm ³	Add Remove Choose a Drug PIPERACILLIN/TAZOBACTAM	QAD
1	4/1/2018	5		40					0	
2	4/2/2018	5		40					0	
† 3	4/3/2018	5		40						
† 4	4/4/2018	10		60		‡ IVAC				¶ yes
† 5	4/5/2018	8		50						¶ yes
† 6	4/6/2018	8		40						¶ yes
7	4/7/2018	6		40						¶ yes
8	4/8/2018	5		40						¶ yes
9	4/9/2018	5		40						¶ yes
10	4/10/2018									¶ yes


Brief report			
Assessment of an automated surveillance system for of initial ventilator-associated events	or detection		
Dooshanveer Nuckchady MD ^a , Michael G. Heckman MS ^b , Nancy Tara Creech RN ^c , Darlene Carey RN, MSN ^c , Robert Domnick BS ^d , Walter C. Hellinger MD ^{a,*}			
	event electronic surveillar implementation	ce system: A report of a successful	
Electronic Implementation of a Novel Surve Paradigm for Ventilator-associated Events Feasibility and Validation Peter M. C. Klein Klouwenberg ^{1,2,3*} , Maaike S. M. van Mourik ^{1*} , David S. Marcus J. Schultz ⁴ , Olaf L. Cremer ² , and Marc J. M. Bonten ^{1,3} ; on penalt	. Y. Ong ^{1,2,3} , Janneke Horn ⁴ ,	hifer Flaherty RN, MPH, CIC ^c , I, CIC ^d , Jing Ding PhD ^e , Julie E. Mangino MD ^{b,c}	
	Building and Validating a C	omputerized Algorithm for Surveillance tor-Associated Events	
Tal		la, MD; ³ Anupama Neelakanta, MD, MPH; ⁴ Thomas Chevalier, BSN, CIC; ² r, MD; ⁶ Mary E. Robinson, BSBA; ² Keith S. Kaye, MD, MPH ⁶	
Development, Implementation and Use of Elect Ventilator-Associated Events (VAE			
Ervina Resetar, MIM, PMP ^{1,3} , Kathleen M. McMullen, M MPH ² , Joshua A. Doherty, BS ³ , Kathleen A. Gase, MPH,			

Attributable Mortality of VAE versus VAP

Canadian Critical Care Trials Group ABATE Study

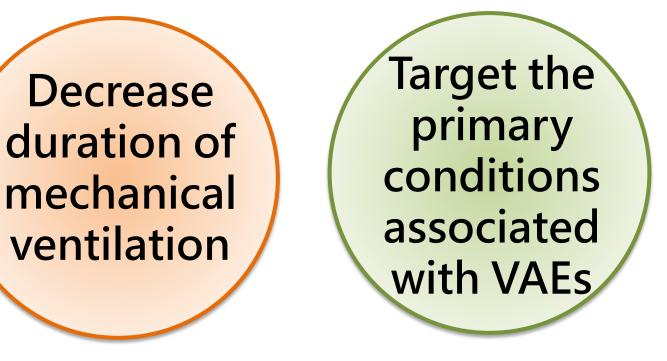
11 ICUs, 1330 patients, VAE vs VAP Surveillance



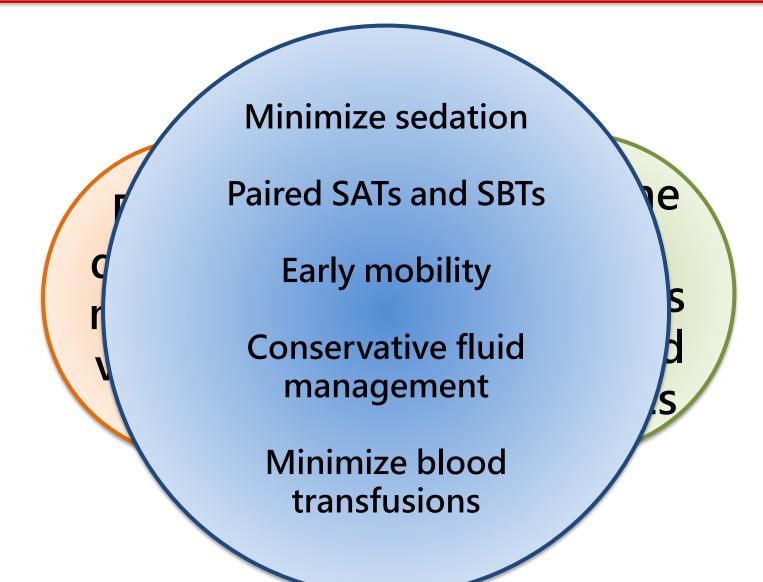
Muscedere et al. Chest 2013;144:1453

Qualitative analysis of 153 VAEs

Royal Brisbane & Women's Hospital, Queensland, Australia



Hayashi et al. Clin Infect Dis 2013;56:471-477

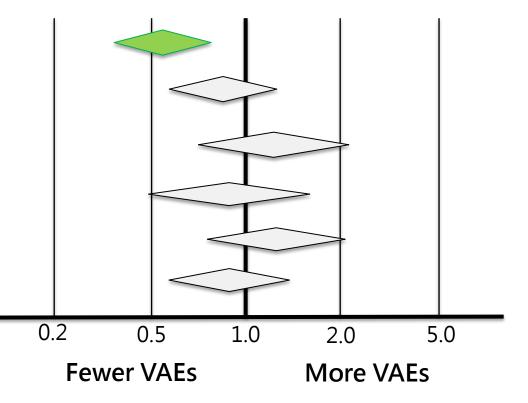

VAE = VAP +Fluid + ARDS + Atelectasis

Fewer VAEs How do we get there?

Strategies for Preventing VAEs

Strategies for Preventing VAEs

VAE Prevention Strategies

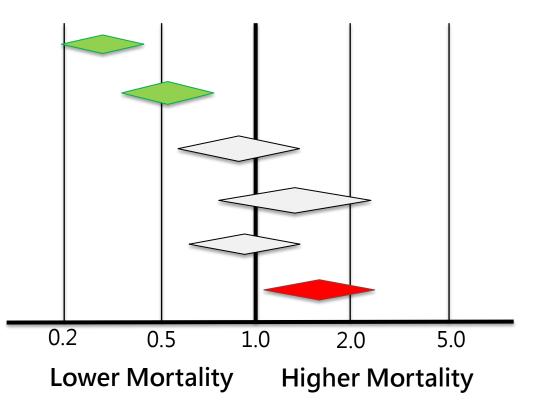

<i>Well aligned with other best practice initiatives</i>	ABCDE	Choosing Wisely	PAD Guidelines	Surviving Sepsis	Strategies to Prevent VAP
Minimize sedation	1	1	1	1	
Paired SATs and SBTs		1	1	1	
Early Mobility			1		
Conservative fluid management					
Conservative transfusion thresholds					

Ventilator Bundle Compliance and VAEs

Retrospective analysis of 5,539 patients on mechanical ventilation adjusted for comorbidities, severity of illness, contraindications, etc.

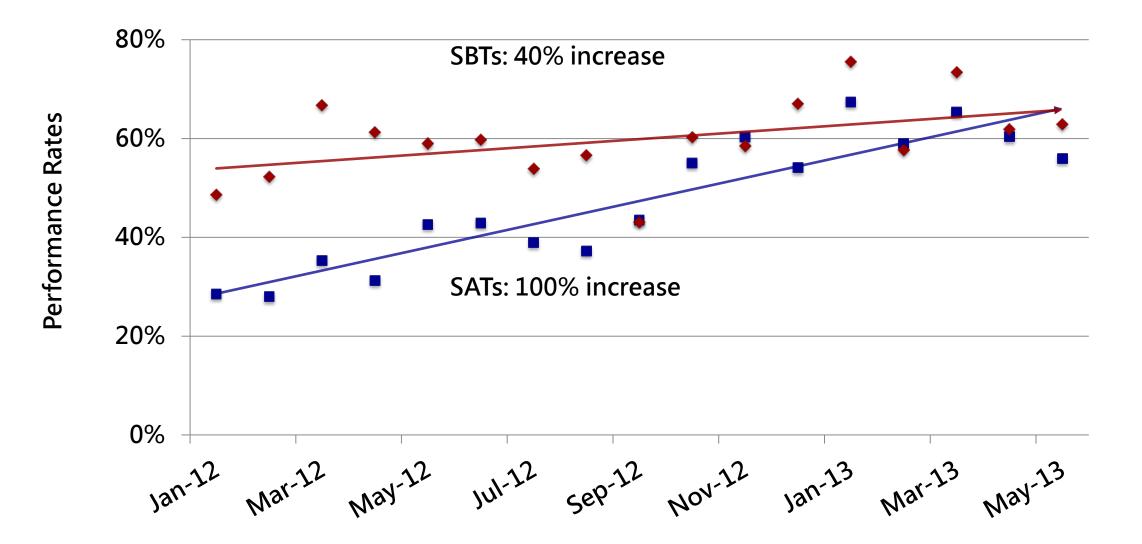
Spontaneous breathing trials Spontaneous awakening trials Head of bed elevation Thromboprophylaxis Stress ulcer prophylaxis Oral care with chlorhexidine

Hazard Ratios for VAEs

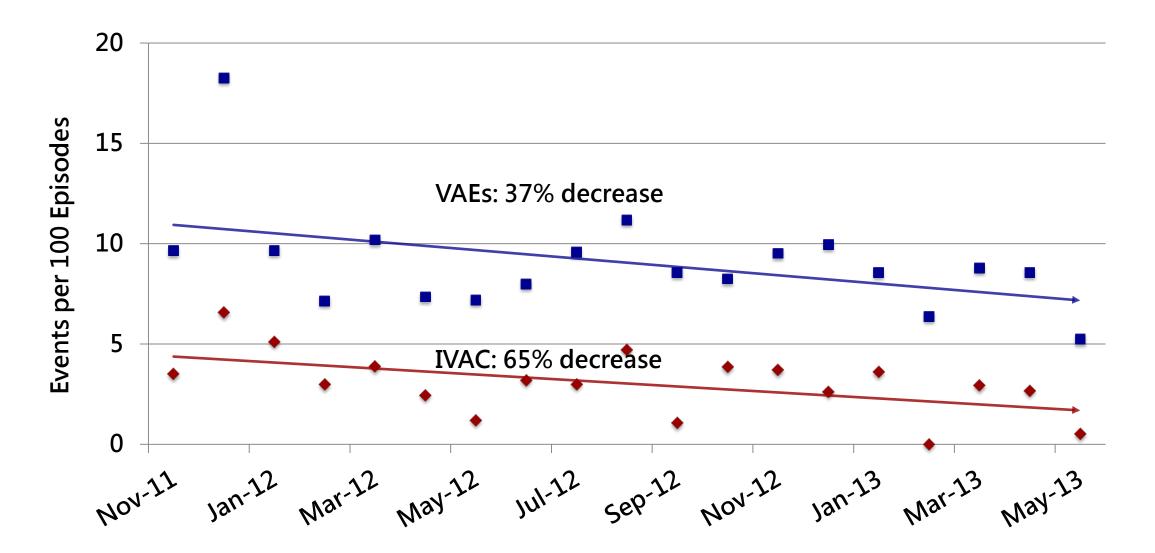


Ventilator Bundle Compliance and Death

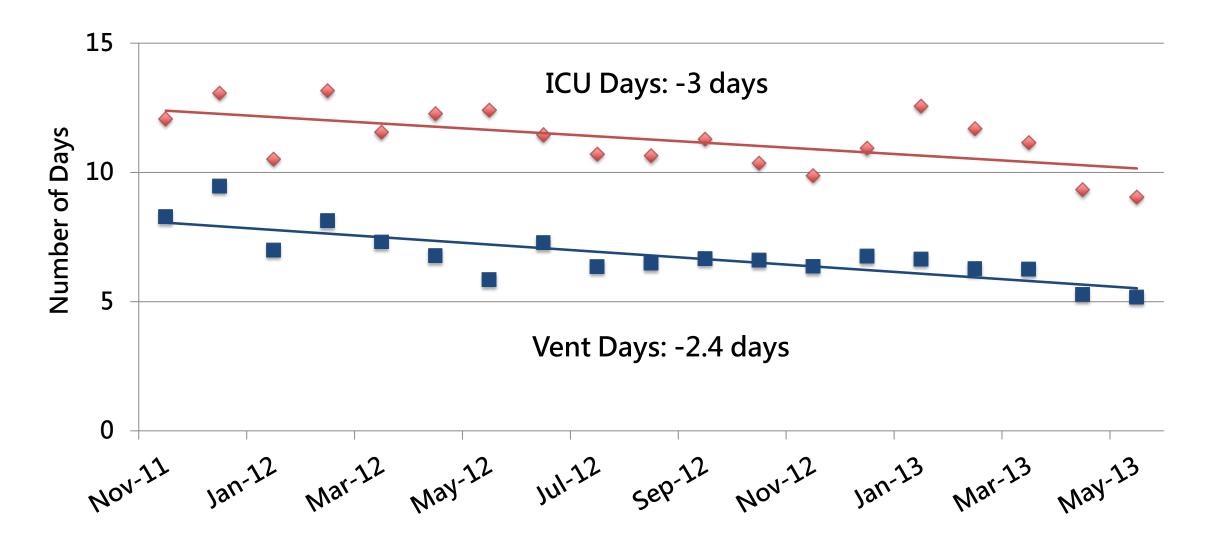
Retrospective analysis of 5,539 patients on mechanical ventilation adjusted for comorbidities, severity of illness, contraindications, etc.


Spontaneous breathing trials Spontaneous awakening trials Head of bed elevation Thromboprophylaxis Stress ulcer prophylaxis Oral care with chlorhexidine

Hazard Ratios for Ventilator Death

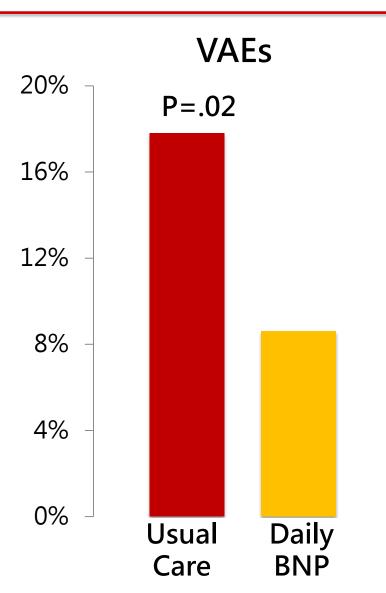

- Prospective care improvement collaborative
- 12 ICUs (mix of med, surg, mixed & academic, community)
- 19 months
- Goal: prevent VAEs through earlier liberation from mechanical ventilation
- Mechanism: enhance the uptake and performance of paired daily SATs and SBTs ("Every Patient, Every Day")

SATs and SBTs


Am J Resp Crit Care Med 2015;191:292-301

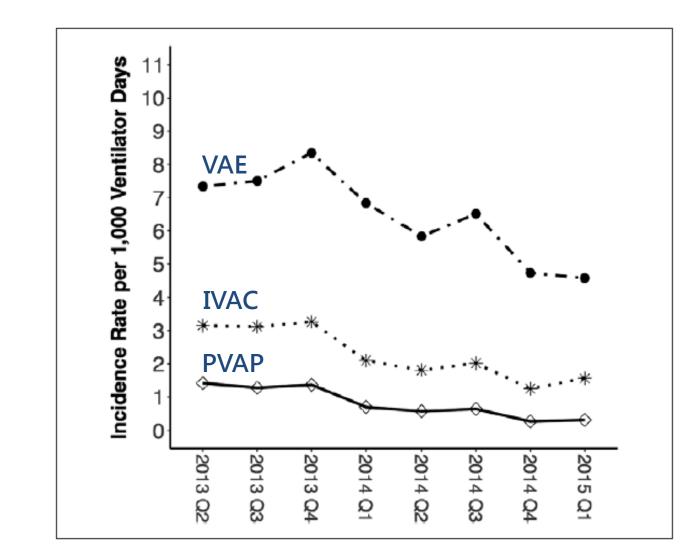
Ventilator-Associated Events

Am J Resp Crit Care Med 2015;191:292-301


Ventilator Days and ICU Days

Am J Resp Crit Care Med 2015;191:292-301

Depletive Fluid Management


- Randomized controlled trial of ventilator weaning
- 304 patients randomized to daily BNP levels versus usual care
- Patients randomized to daily BNP levels had:
 - More diuretics
 - More negative fluid balance
 - Less time to extubation
 - <u>50% fewer VAEs</u>

Mekontso Dessap et al. Chest 2014;146:58-65

Two State Collaborative to Prevent VAEs

56 ICUs in Maryland and Pennsylvania, Oct 2012 to Mar 2015

Crit Care Med 2017;45:1208-1215

Ventilator-associated events A patient safety opportunity

• Broaden Awareness

 Provides hospitals with a fuller picture of serious complications in mechanically ventilated patients

• Catalyze Prevention

• A significant portion of VAEs are preventable through well-accepted best practices in critical care

Reflect and Inform Progress

 VAE surveillance provides an efficient and objective yardstick to measure and benchmark progress

NEJM 2013;368:1472

Summary

- VAP is a **poor metric for benchmarking** and quality improvement
 - Diagnosis subjective and inaccurate
 - High interobserver variability
 - Poor guide to selecting prevention practices that will improve patient outcomes
- CDC created **ventilator-associated event definitions** to enhance objectivity, automation, and expand prevention efforts
 - Suitable for automated surveillance
- Lower VAE rates and improve outcomes by implementing strategies to reduce duration of mechanical ventilation and prevent the primary conditions associated with VAEs (pneumonia, ARDS, atelectasis, edema)
 - Minimize sedation
 - Paired daily SATs and SBTs
 - Early mobility
 - Conservative fluid management
 - Minimize blood transfusions

Thank You!

mklompas@bwh.harvard.edu